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Fluids of hard ellipsoids: Phase diagram including a nematic instability
from Percus-Yevick theory

M. Letz and A. Latz
Johannes-Gutenberg Universita¨t, 55099 Mainz, Germany

~Received 5 May 1999!

An important aspect of molecular fluids is the relation between orientation and translation parts of the
two-particle correlations. Especially, a detailed knowledge of the influence of orientation correlations is needed
to explain and calculate in detail the occurrence of a nematic phase. The simplest model system that shows
both orientation and translation correlations is a system of hard ellipsoids. We investigate an isotropic fluid
formed of hard ellipsoids with the Percus-Yevick theory. Solving the Percus-Yevick equations self-consistently
and accurately in the high density regime gives, contrary to previous works, a clear criterion for a nematic
instability. We calculate in detail the equilibrium phase diagram for a fluid of hard ellipsoids of revolution. Our
results compare well with Monte Carlo simulations and density-functional theory.@S1063-651X~99!16311-6#

PACS number~s!: 61.25.Em, 61.30.Cz, 61.20.Gy
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I. INTRODUCTION

Isotropic simple liquids formed of atomic systems wi
rotational symmetry are well understood. If the two partic
correlation is given by a hard sphere interaction an integ
equation like the Percus-Yevick~PY! @1# closure relation can
be solved analytically. For the liquid phase the PY equat
gives good results even in the dense liquid regime~up to a
packing fractionf,0.49) above which the equilibrium stat
is crystalline, which PY fails to obtain. The packing fractio
f is defined as the relation between the number densitr
and the volume of the particlesf5(p/6)rs3, with s usu-
ally set to 1. For hard spheres,f'0.64 corresponds to ran
dom closed packing andf5A2p/6'0.74 to packing in a
fcc lattice.

Molecular systems have usually complicated potent
that are modeled, e.g., by Lennard-Jones potentials of e
atom in a molecule. A very basic feature of molecular s
tems is the existence of orientation degrees of freedom
interplay in nontrivial ways with translational degrees
freedom. The simplest model system that allows us to st
this interplay is a system of rotational symmetric hard ell
soids. The equilibrium phase diagram is now—compared
hard spheres—enriched by an additional variable, the as
ratio X0 of the ellipsoids, which is defined as the ratio b
tween the major axisa and the minor axisb, X05a/b.
Throughout the paperb51 is chosen. As a function of th
aspect ratio or density a fluid of hard ellipsoids can now a
undergo an isotropic to nematic~IN! transition. This is ex-
pected from the Onsager solution of hard spherocylind
@2#, and has been found by computer simulations@3# and also
by density-functional theory@4#.

PY theory deals with the isotropic phase. It is not able
describe a phase transition. However, it is known from
hypernetted chain~HNC! closure relation for hard ellipsoid
@5# and for dipolar hard spheres@6# that it is in principle
possible to identify a precursor phenomenon of a phase t
sition in an integral equation. Such a precursor phenome
is not known for the PY closure relation~see also@7#!.

In this paper, however, we show that the PY closure
PRE 601063-651X/99/60~5!/5865~7!/$15.00
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lation leads not only to a clear indication of a nematic ins
bility but enables us also to calculate the equilibrium pha
diagram of hard ellipsoids. Therefore we show that with
spect to the description of a nematic instability PY theory
not inferior to the HNC.

II. INTEGRAL EQUATIONS

A fundamental relation that all closure relations for int
gral equations are based upon is the Ornstein-Zernike~OZ!
equation@8#

h~r1 ,V1 ,r2 ,V2!5c~r1 ,V1 ,r2 ,V2!1r„c~r1 ,V1 ,r3 ,V3!

3h~r3 ,V3 ,r2 ,V2!…r3 ,V3
. ~1!

It provides the relation between the total correlation funct
h(r1 ,V1 ,r2 ,V2) and the direct correlation function
c(r1 ,V1 ,r2 ,V2). The product is given by

~••• !r3 ,V3
5

1

16p2E dV3E dr3 , . . . , ~2!

wherer i is the position of the center of mass of the ellipso
i andV i is the orientation of this ellipsoid represented by t
Euler anglesF i ,u i ~the third Euler anglex is not needed due
to the symmetry of the ellipsoids!. Due to translational in-
variance the functions depend onr i j 5r i2r j only. In the fol-
lowing subsections we transform the OZ equations and
PY closure relation@Eq. ~14!# in such a way that we can us
it for a numerical treatment. With most of the definitions w
follow the book of Gray and Gubbins@8#.

A. Spherical harmonics

An obvious orthogonal basis set to expand the angu
dependence of the correlation functions is given by spher
harmonics. The transformed correlation functionF
P$c,h, . . . % is given by
5865 © 1999 The American Physical Society
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5866 PRE 60M. LETZ AND A. LATZ
F~ l 1 ,l 2 ,m;r !5 i ( l 12 l 2)E dV1E dV2F~V1 ,V2 ,r !

3Yl 1
m~V1!Yl 2

m* ~V2!. ~3!

Note that our transformation differs by a factor of (21)m

and by a factor ofi ( l 12 l 2) from the definition used in the
book of Gray and Gubbins@8#. The latter of these two factor
gives us~in q frame! only real elements of the correlatio
functions. For Eq.~3! the r frame was used. This means th
z axis of the coordinate system was chosen along the
connecting the two particles that are correlated@8#. Therefore
we only need to deal with one indexm. In q space we use
after Fourier transformation, the laboratory fixed frame, thq
frame@9,8#, where now allq-dependent correlation function
are diagonal inm andm8. To be specificF̃( l 1 ,l 2 ,m,m8;q)
5dm,m8F̃( l 1 ,l 2 ,m,m8;q)[F( l 1 ,l 2 ,m;q). Within the com-
plete set of spherical harmonics the OZ equation can be
written:

h~ l 1 ,l 2 ,m;r !5c~ l 1 ,l 2 ,m;r !

1
r

4p (
l
E dr1c~ l 1 ,l ,m;r 1!

3h~ l ,l 2 ,m;r 2r 1!. ~4!

This equation relates the total correlation functi
h( l 1 ,l 2 ,m;r ) with the direct correlation function
c( l 1 ,l 2 ,m;r ). The total correlation function has two contr
butions, a direct one that results from direct correlations
is just c( l 1 ,l 2 ,m;r ) plus an indirect contribution that ave
ages over possible interactions mediated by another par
in an indirect way.

B. Transformation into q space

Due to the expansion in spherical harmonics a Fou
transform cannot be performed as usual. First one has to
a representation ofF that is invariant with respect to rotation

F~ l 1 ,l 2 ,l ;r !5(
m
A 4p

~2l 11!
F~ l 1 ,l 2 ,m;r !

3C~ l 1 ,l 2 ,l ;m,2m,0!, ~5!

whereC( l 1 ,l 2 ,l ;m1 ,m2 ,m) are the Clebsch-Gordan coeffi
cients. The next step is the Hankel transformation, wh
uses the Rayleigh expansion to transformF from r space toq
is

e-

d

le

r
nd

h

space. This involves spherical Bessel functionsj l(qr) due to
the expansion ofeiqr within the basis of spherical harmonic

F~ l 1 ,l 2 ,l ;q!54p~2 i ! lE
0

`

j l~qr !F~ l 1 ,l 2 ,l ;r !. ~6!

In the final step one goes from the rotational invariant re
resentation to theq frame and one gets a representation ofF:

F~ l 1 ,l 2 ,m;q!5(
l
A~2l 11!

4p
F~ l 1 ,l 2 ,l ;q!

3C~ l 1 ,l 2 ,l ;m,2m,0!. ~7!

Therefore Eqs.~5!–~7! transform a two particle correlation
function given in real space andr frame into a function inq
space andq frame.

C. The Ornstein-Zernike equations inq space

Applying Eqs. ~5!–~7! to the OZ equation, one can re
write Eq. ~4!:

h~ l 1 ,l 2 ,m;q!5c~ l 1 ,l 2 ,m;q!1
r

4p (
l

c~ l 1 ,l ,m;q!

3h~ l ,l 2 ,m;q!. ~8!

This can be written as a matrix equation for eachm and q
value:

h= ~m;q!5c= ~m;q!1
r

4p
c= ~m;q!h= ~m;q!, ~9!

wherec= ,h= are symmetric matrices with indicesl 1 ,l 2.
For the input into our numerical calculation we define

auxiliary correlation functiony in the usual way@8#:

y
=
~m;q!5h= ~m;q!2c= ~m;q!. ~10!

Using this auxiliary function, the OZ equation is rewritten

S 12
r

4p
c= ~m;q! D y

=
~m;q!5

r

4p
@c= ~m;q!#2. ~11!

This is a linear system of equations that determin
y( l 1 ,l 2 ,m;q) if c( l 1 ,l 2 ,m;q) is known.

III. PERCUS-YEVICK CLOSURE RELATION

In a formal way one can define a product between t
correlation functionsc5a* b @10#. In the r frame this prod-
uct reads;
c~ l 1 ,l 2 ,m;r !5
1

4p (
l 18 l 28

l 19 l 29

A~2l 1811!~2l 2811!~2l 1911!~2l 2911!

~2l 111!~2l 211!
C~ l 18 ,l 19 ,l 1 ;0,0,0!C~ l 28 ,l 29 ,l 2 ;0,0,0!i l 12 l 21 l 292 l 18

3 (
m8,m9

C~ l 18 ,l 19 ,l 1 ;m8,m9,m!C~ l 28 ,l 29 ,l 2 ;2m8,2m9,2m!a~ l 18 ,l 28 ,m8;r !b~ l 19 ,l 29 ,m9;r !. ~12!
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FIG. 1. For X053.0 and f50.49 already
close to the nematic instability matrix elements
the direct correlation functionc( l 1 ,l 2 ,m,r ) are
compared. The curves with dashed lines are o
tained with the exact ellipsoid overlap criterion
while the curves with solid lines show the resul
obtained with the Gaussian overlap model.
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The Clebsch-Gordan coefficients enter into the equation
to spatial rotations that have to be performed.

The PY closure relation can now be expressed as

c5b* g, ~13!

whereg is the pair correlation function and viab512ebu

the pair potentialu enters into the equation. For the purpo
of solving the PY equation numerically it is better to rewr
Eq. ~13! as a function of the auxiliary functiony:

c5 f * ~y11!, ~14!

wheref is the Mayer function

f ~V1 ,V2 ,r !5e2bu(V1 ,V2 ,r )21. ~15!

The matrix elements off in the basis set of spherical harmo
ics have to be computed using Eq.~3!. This equation~14!
determines the direct correlation functionc if the auxiliary
function y and the Mayer functionf are known.

A. The pair potential

In order to determine the matrix elements of the May
function

f ~V1 ,V2 ,r !5H 0 for D~V1 ,V2 ,r !,r ,

21 for D~V1 ,V2 ,r !>r ,
~16!

we use the well known approximation of Berne and Pec
kas @11#, whereD depends on the relative orientation of th
two ellipsoids:

D~V1 ,V2 ,r !5F12
1

2
xS ~cosu11cosu2!2

11x~e1e2!

1
~cosu12cosu2!2

12x~e1e2! D G21/2

, ~17!
e

r

-

where ei are unit vectors along the symmetry axis of
ellipsoid on positioni. This approximation models the inter
action between two ellipsoids by the overlap of Gaussia
The value ofx is related to the aspect ratio of the ellipsoi

x5
X0

221

X0
211

. ~18!

Note that D(V1 ,V2 ,r ) is not invariant underX0→X0
21,

which implies x→2x. To demonstrate the validity of the
Gaussian overlap model we have plotted in Fig. 1 seve
matrix elements of the direct correlation functio
c( l 1 ,l 2 ,m;r ) for X053.0 andf50.49 ~already close to the
nematic instability!. These are compared with results o
tained with the exact ellipsoid overlap criterion. Compa
also @12#.

B. Symmetries of the solution

Due to the symmetries of the ellipsoid there are cert
simplifications in the calculation that can be applied.

~i! Due to the head-tail symmetry of the ellipsoids a
matrix elements of a correlation functionF( l 1 ,l 2 ,m,u) u
P$r ,q% with l i odd are zero.

~ii ! All elements ofF are real both inr space andq space.
Using the definition of Eq.~3! this is even valid for all linear
molecules.

~iii ! Therefore there is an additional symmet
F( l 1 ,l 2 ,m,u)5F( l 1 ,l 2 ,2m,u).

~iv! Also the l occurring in the rotational invariants@Eq.
~5!# can only have even values following froml 11 l 21 l
5even, which results from inversion symmetry.

For a proof of~ii ! and ~iii ! the reader may consult@13#
and for ~i! and ~iv! one might look up@8#. There is one
further feature we want to point out: For small argumentr
or k), all nondiagonal elements (l 1Þ l 2) have to vanish, at
least in the isotropic phase:

lim
u→0

F~ l 1 ,l 2 ,m;u!50 if l 1Þ l 2 . ~19!
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Using the definitionF̃( l 1 ,l 2 ,m,m;u)[F( l 1 ,l 2 ,m,u), this
follows from the transformation ofF̃ under rotationsR:

lim
u→0

F̃~ l 1 ,l 2 ,m,m;Ru!

5 lim
u→0

(
m1 ,m2

D
m1 ,m
l 1* ~R!Dm2 ,m

l 2 ~R!F̃~ l 1 ,l 2 ,m1 ,m2 ;u!.

~20!

This equation has to be valid for allR, which results in
d l 1 ,l 2

dm1 ,m2
. This can be seen by integrating both sites of

above equation and by making use of the unitarity of
rotation matrices:

E dRlim
u→0

F̃~ l 1 ,l 2 ,m,m;Ru!

58p2F̃~ l 1 ,l 2 ,m,m;0!

5 (
m1 ,m2

E dRD
m1 ,m
l 1* ~R!Dm2 ,m

l 2 ~R!F̃~ l 1 ,l 2 ,m1 ,m2,0!

5 (
m1 ,m2

8p2

2l 111
d l 1 ,l 2

dm1 ,m2
F̃~ l 1 ,l 2 ,m1 ,m2,0!. ~21!

ThereforeF has to vanish for smallu for all nondiagonal
elements (l 1Þ l 2). This symmetry can clearly be seen fro
Fig. 2~c! and from Fig. 3~c!. Further the value of the diago
nal elements ofF( l 1 ,l 1 ,m,u→0) with (2l 111) differentm
cannot~for short ranged potentials! depend onm.

C. Calculation procedure

In order to obtain a numerical solution of the equatio
above the following steps have to be performed:

~a! The matrix elementsf ( l 1 ,l 2 ,m,r ) of the Mayer func-
tion have to be computed using Eq.~3! and Eqs.~16!–~18!.
For our calculation we used 100 points in the ran
min(1,X0),r ,max(1,X0), wherer is given in units of the
major axisa of the ellipsoids.

~b! An initial guess forc( l 1 ,l 2 ,m,r ) has to be made an
a grid for r of Nmax5400 points in the range 0,r ,10 was
chosen.

~c! The iteration begins by using Eqs.~5!–~7! to go from
c( l 1 ,l 2 ,m,r ) in r space andr frame to c( l 1 ,l 2 ,m,q) in q
space andq frame using the Rayleigh transformation for th
direct correlation functionc( l 1 ,l 2 ,m,r ). It turned out to be
crucial to use an analytic expansion of the spherical Be
functions j l(x) for small argumentx.

~d! The auxiliary functiony( l 1 ,l 2 ,m,q) has to be calcu-
lated using the OZ equations in the form of Eq.~11!. As a
q-space grid we used 400 points in the range 0,q,50 were
q is measured in units of@2p/a#.

~e! Using Eqs.~5!–~7!, but transforming fromq to r, we
get the functiony( l 1 ,l 2 ,m,r ) in r space andr frame.

~f! With the help of the PY equation~12! one can obtain
the next iteration forc( l 1 ,l 2 ,m,r ).
e
e

s

e

el

~g! Steps~c!–~f! have to be iterated until a fix point of th
equations has been reached with a given accuracy. In
way a self-consistent solution can be found.

As a test for self-consistency we choose the mean sq
deviation ofc between two steps of iteration,

FIG. 2. In order to demonstrate the breakdown of the appro
mate symmetry between prolate and oblate ellipsoids (X0→1/X0)
we plotted forX052.0 andX050.5 elements ofS( l 1 ,l 2 ,m,q), ~a!
l 15 l 25m50, ~b! l 15 l 252, m50, ~c! l 152, l 25m50. The q
axis was scaled by a factor ofX0

1/3.
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e5
1

~ l max21!~mmax11!Nmax

3A (
l 1 ,l 2 ,m,n

@c(p11)~ l 1 ,l 2 ,m,r n!2c(p)~ l 1 ,l 2 ,m,r n!#2,

~22!

where the summation indices were in the regionsl 1 ,l 2

FIG. 3. The static structure factors of two systems of ellipso
close to and far away from the nematic instability are shown
comparing theS( l 1 ,l 2 ,m,q) components forf50.55 for X051.3
~far away from the nematic instability! and forX052.5 ~close to the
nematic instability!. In part ~a! the S(0,0,0,q) is plotted, in part~b!
S(2,2,0,q), and in part~c! S(2,0,0,q). Note that theS(2,0,0,q) com-
ponents vanish atq50 due to the symmetries.
P$0,2, . . . ,l max%, mP$0,1,2,3, . . . ,mmax% and at the ende
was typically chosen to be smaller then 231025 as a condi-
tion for convergence.

In this way one can obtain a stable self-consistent solu
for the correlation functions. This has already been done
a fluid of ellipsoids in Refs.@5,14–16# and also in Ref.@17#
for a single ellipsoid in a fluid of hard spheres. In this wo
we have extended the calculation to a much higher den
regime than has been done in previous works. In orde
reach the high densities we were forced to restrict the m
mum numbers forNmax to 400 andl max andmmax to 4. The
value of l in the rotational invariants was restricted tol
P$0,2,4, . . . ,2l max%.

IV. RESULTS FROM THE PY EQUATION

The virial expansion of hard ellipsoids of revolution
symmetric with respect toX0→1/X0 up to the second orde
in density. This approximate symmetry is violated for high
densities. This is shown in Fig. 2 where we have plot
three matrix elementsS(0,0,0,q), S(2,2,0,q), andS(2,0,0,q)
of the static structure factorS( l 1 ,l 2 ,m,q) for f 5 0.62,
which is related to the total correlation functio
h( l 1 ,l 2 ,m,q) by

S~ l 1 ,l 2 ,m,q!5d l 1 ,l 2
1

r

4p
h~ l 1 ,l 2 ,m,q!,

S= ~m,q!51=1
r

4p
h= ~m,q!,

S= ~m,q!5S 1=2
r

4p
c= ~m,q! D 21

. ~23!

The q axis has been stretched by a factor ofA3 X0. It can be
clearly seen that a symmetryX0→1/X0 is not exactly valid at
such high densities.

A. Nematic instability

Close to the nematic instability the matrix eleme
S(2,2,m,q) of the static structure factor develops a dive
gence atq→0. This was already discussed in@5# for results
based on the HNC~hypernetted chain! closure relation. In
Fig. 3~b! such a precursor of a divergence is seen where
f50.55 two systemsX051.3 ~far from the nematic phase!
andX052.5 ~close to the nematic instability! are compared.
For X051.3 theS(0,0,0,q) matrix element dominates, as ca
be seen from Fig. 3~a!. Note also from Fig. 3 that the
S(0,0,0,q) components and theS(2,2,0,q) seem to change
their role when going fromX051.3 to X052.5. The static
structure forX051.3 is dominated by theS(0,0,0,q) compo-
nent, while the orientational correlatorS(2,2,0,q) is small.
This behavior is reversed when looking atX052.5. Here the
static structure is dominated by the orientational correlati
S(2,2,0,q), while the center of massS(0,0,0,q) only shows a
weak structure. Due to the fact that all the nondiagonal e
ments ofS at q→0 vanish@as can be seen in Fig. 3~c! for
S(2,0,0,q)# only the c(2,2,m,0) component governs th
nematic instability and we get as a condition for such
instability

s
y
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lim
q→0

S 12
r

4p
c~2,2,m,q! D→0. ~24!

This expression is the inverse of the Kerr constantK for
nondipolar potentials:

K215 lim
q→0

S 12
r

4p
c~2,2,m,q! D . ~25!

A detailed analysis of theq→0 behavior therefore gives us
condition for the nematic instability such as is also discus
in a similar way in @6# where dipolar fluids in the HNC
approximation have been considered. The instability is de
onstrated in Fig. 4. In part~a! for X052.5 the function
c(2,2,0,q) is plotted for different densities close to the nem
atic instability. The first three densitiesf50.53,0.54,0.55
were the highest ones we could reach with the numer
solution of the PY equation, and the two higher densitiesf
50.57,0.59 are quadratic extrapolations. In Fig. 4~b! this is
shown in greater detail where 12(r/4p)c(2,2,0,q) is plot-

FIG. 4. In ~a! c(2,2,m,q) is plotted forq→0 and for different
densities. The curves forf50.53,0.54,0.55 were obtained by a s
lution of the PY equations, whereas the curves forf50.57,0.59
were obtained by applying a quadratic extrapolation to higher d
sities toc(2,2,0,q). The important part for the nematic instability
plotted in ~b! where the function 12(r/4p)c(2,2,0,q) is drawn,
which becomes atq50 the inverse ofS(2,2,0,q50).
d

-

al

ted, which becomes the inverse ofS(2,2,0,0) atq50. For
X052.5, the critical density whereS(2,2,0,0) diverges isf
50.593, according to such a quadratic extrapolation.
want to mention that the convergency of the PY equatio
becomes extremely slow~e.g., for f50.55 for X052.5)
close to the nematic instability. For the highest densities c
sidered, we had to do more than 104 iteration steps to
achieve convergency, even when starting with a well c
verged result for the next lower density~e.g.,f50.54). This

n-

FIG. 5. For a system with an aspect ratio ofX053.0 the reduced
inverse Kerr constant@S(2,2,0,q50)#21 is plotted as a function of
density. The thin lines are taken from Ref.@5# where the thin dashed
lines are PY results, and the thin solid and thin dotted line
hypernetted chain~HNC! results and from HNC extrapolated va
ues, respectively. The thick solid line is a result of this work o
tained with the PY approximation. The points marked with squa
are calculated, whereas the values at the circles were obtained
a quadratic extrapolation~see text!.

FIG. 6. Isotropic to nematic instability as it arises from
Percus-Yevick calculation. The highest densities considered
plotted with triangles. From there an extrapolation is done to de
mine the instability byc(2,2,0,q→0)54p/r. This was done with a
linear ~circles! and a quadratic~squares! interpolation. For compari-
son we plotted the IN transition, which arises from densi
functional theory@4#. Also the results from Ref.@3# are plotted with
black crosses.
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is probably the reason why the nematic instability has
been discovered in previous works@5,7#. For comparison we
have plotted in Fig. 5 our result forX053.0 together with the
result of Ref.@5#. We do not only find a nematic instabilit
with the PY approximation but also get a density where t
instability occurs, which is much closer to the Monte Ca
simulation results of@3# (rc'0.32) than the result from the
hypernetted chain approximation of Ref.@5#.

B. Equilibrium phase diagram

Using the above condition@Eq. ~24!# we get the phase
diagram for the hard ellipsoids as it arises from the PY
proximation as shown in Fig. 6. For all densities conside
there results a clear indication for a nematic instability. T
phase boundary still depends on the way the extrapolatio
higher densities is done~here linear or quadratic!, but is in
good agreement with other works. For example, the dens
functional theory of Groh and Dietrich@4# is in a reasonable
good agreement with our results. However, due to their
proximation theX0 to 1/X0 symmetry is exact, which is how
ever clearly broken in the PY result. Also the results of Fre
kel et al. @3# are along the same lines. It also seems t
density-functional theory shows a better agreement with
theory for prolate ellipsoids than for oblate ones.
tt
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V. CONCLUSION

Orientational degrees of freedom in molecular syste
can drive a phase transition into an orientationally orde
nematic liquid crystal phase. In principle, integral equatio
have the ability to describe a precursor phenomenon of s
an orientational transition. Until now this is well known fo
e.g., hypernetted chain~HNC! theory. In this work we dem-
onstrate that Percus-Yevick theory also shows a clear pre
sor of the nematic phase. We therefore were able to calcu
the equilibrium phase diagram of hard ellipsoids of revo
tion. The obtained phase diagram is in good agreement w
density-functional theory@4# and Monte Carlo simulations
@3#.
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